AEROSPIKE USER SUMMIT 2018

≺ E R O S P I K E

Aerospike Technical Overview

Brian Bulkowski Founder and Chief Technology Officer Aerospike Srini Srinivasan Founder and Chief Development Officer Aerospike Bharath Yadla Vice President, Product Strategy, Ecosystems Aerospike

Classic Distributed System Failures

Data Location Updates: Reads or writes are applied to a wrong quorum of servers

Asynchronous Replication: Data is applied, but then crashes, other writes are applied, revived server overwrites

Buffered Writes: A crash occurs before data is written to persistent storage

Clock Problems: A subsequent update is applied to a server with a clock in the past

Bugs: A correct architecture, poorly implemented

Replication dirty and stale reads ("call me maybe")

Aerospike 4.0: Strong Consistency with High Performance

Primary Key Consistency

Provide Strong Consistency on primary key, Linearizability and Session Consistency.

Hybrid Memory Architecture

Indexes in DRAM and data in Flash provide storage guarantees and unlock Flash's performance

Commit To Device

Data with highest durability requirements can be synchronously written to Flash storage with little performance loss

Advanced Cluster Management

New Aerospike cluster management enforces single-master but allows for predictable sub-second master handoff during failures

Transaction Model

Distributed master oriented approach creates two-phase commit semantics without transaction log

Hybrid Clock

High performance transaction clock tolerates up to 30 seconds of cluster clock skew and 1 million update per second per record granularity

Roster

List of nodes in cluster assigned to namespace

Easy to manage

Cluster is formed, administrator simply chooses from the list (or says "all")

Theoretically required

"outside information" to create split-brain policies

Calculate the "designated masters and replicas"

The nodes which will contain data in "steady state"

Hybrid Clock

"Lamport Clock" Best choice for master-based commit systems

Efficient

Less data than a vector clock

Combines three truths

"Regime" when master changes Local timestamp (milliseconds) Counter to gain 1M writes per sec

27 seconds before theoretical roll-over

Keep your clocks loosly in sync

Aerospike 4.0: Master/Replica Promotion and Availability

Roster – This defines the list of nodes that are part of the cluster in steady state

Example applies to an individual partition **p**

Cluster Healthy

SPLIT – Rule 1; *p* is <u>active</u> All designated replicas in a subcluster, p active

SPLIT – Rule 2; p is active

One designated replica, in a majority sub-cluster

SPLIT – Rule 3; *p is <u>inactive</u>*

Majority has no designated replicas, minorities don't have all replicas

Aerospike 4.0: Write Logic (2PC)

< E R O S P I K E

Aerospike 4.0: Linearizing Reads

\triangleleft E R O S P I K E

Aerospike 4.0: Jepsen Test Confirms Strong Consistency

"Aerospike does appear to provide linearizability through network partitions and process crashes" --- Kyle Kingsbury, Jepsen.io

http://jepsen.io/analyses/aerospike-3-99-0-3

cassandra	2013	×
i redis	2013	×
< E R O S P I K E-	2015	×
mongoDB	2017	\checkmark
Cockroach DB	2017	√?
∢EROSPIKE	2018	

Aerospike 4.0: High Performance with Strong Consistency

Aerospike internal benchmark of Strong Consistency versus Availability

	Linearizable Consistency	Sequential Consistency	Availability
OPS	1.87 million	5.95 million	6 million
Read Latency	548 µs	225 µs	220 µs
Update Latency	630 µs	640 µs	640 µs

In-memory configuration with persistence enabled

5 node cluster 500M keys Replication factor 2 Objects were a 8 byte integers

Aerospike Ecosystems

May 23, 2018

11 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

Overview

- Aerospike for Enterprises
- Ecosystems
- Real-time Insights
 - Trends
 - Challenges
 - Components
- Aerospike Real-Time Analysis Framework
 - Reference Architecture
 - Use Cases

Frictionless experience in Enterprises - What we believe it would take?

Frictionless experience for Enterprise demands interoperability, coexistence, manageability

Aerospike related ecosystems in an Enterprise

14

Announcing Availability of

Aerospike Real-time Analysis Framework [RAF] 1.0

Analytics to Analysis

Real-time Business Insights - Challenges

Need to Combine Data

- Analysis needed on combined data (stream + transactional)
- Transactional data enhances stream data = more insights
- Storage needed to complement both stream & transactional data
- Difficult to scale systems (designed for low scale)

- Complex server/cluster deployments
- Complex Ops mgmt.
- Larger in-memory foot print leads to less actionable data

≪ E R O S P I K E-

Introducing a new approach for Real-time Insights: Aerospike Realtime Analysis Framework (RAF)

Features and Benefits of RAF 1.0

Key Features

- Ability to join stream and transactional data in near real time
- Perform join & intersect operations on Aerospike datasets with streaming data
- Reduced friction to developers to develop analytics applications using Spark
- SQL interface via spark SQLLib for Aerospike datasets
- ML-driven operations using SparkML [support for other ML libraries]

Customer Benefits

- Expanding the "frame of data" that is processed in real-time by joining stream data from Spark with transactional data from Aerospike
- Lower TCO for real-time analytics by operating on larger datasets yet with a smaller cluster footprint
- Gain closed-loop business insights by operating on both transactional and stream datasets
- Rapidly develop using Spark libraries no additional skill set required
- Accelerate business insights by enabling decisions in seconds as opposed to hours or days

< E R O S P I K E

A Sample Deployment Scenario

- ✓ Total of 1Bn Records with record size of 1.5K : Total 1.4TB data
- ✓ Processing 5% of total records for every 30min window : 50 mn events, ~28KTPS
- ✓ CEP Engine with all in-memory processing ability vs RAF+Aerospike

CEP data In Memory

32 Nodes required for processing : r4.2xl

\$ 199,000 with 3-yr upfront reserved instances

RAF add-on with Aerospike

4 Nodes required for processing : i3.2xl

\$ 32,933 with 3-yr upfront reserved instances

5x Operative cost savings on infra [\$167K]

Let us say the case is not for 1.4TB but for 10TB, that is about \$1.2mn in infra cost savings

20 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

\triangleleft E R O S P I K E

RAF Use Cases

Risk Management in Capital Markets

Risk calculation in real-time during market hours, processing insights on combined trade stream data and historical customer data for risk monitoring in real-time

22 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

\triangleleft E R O S P I K E-

Fraud Detection

Fraud and false positive identification in real-time for every payment event under ~750ms, monitoring fraud & false positives in real-time

23 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

∢EROSPIKE

Credit Card Processing Network

Issuer & Acq Profile

Authorization of CC processing with mean latency of ~13ms, enabling processing of transactions through Network

24 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

\triangleleft E R O S P I K E-

Personalization & Recommendation Engines

Product recommendations and personalized pricing, based on shopper behavior data, buying patterns, product movement, transaction data etc

25 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

∢EROSPIKE

Real-Time Churn prediction in Telco

Predicting churn in customer base using, data like CDR, stream, network, geo reference

26 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

\triangleleft E R O S P I K E-

Industrial IoT

Predicting when to service & maintain the industrial equipment, based on usage, machine data, warranty, consumption etc

27 A E R O S P I K E U S E R S U M M I T | Proprietary & Confidential | All rights reserved. © 2018 Aerospike Inc

< E R O S P I K E

Thank You

